Коэффициент мощности сварочного аппарата

Косинус фи сварочного инвертора. Коэффициент мощности сварочного аппарата Жесткий каркас и большие наружные карманы обеспечивают удобство пользования.

Коэффициент мощности сварочного аппарата

Коэффициент мощности (КМ) сварочного аппарата и cos φ. Часть 2

Хорошо известно, что у импульсных источников питания с так называемым бестрансформаторным входом (к ним относятся и сварочные инверторы) коэффициент мощности (КМ или power factor — PF) обычно не лучше 0,6-0,7 из-за значительных искажений формы потребляемого тока. Из-за такой специфики входа получение лучшего PF невозможно без применения корректора коэффициента мощности (PFC):

  • или пассивного — это по сути дополнительный фильтр на входе с очень массивным низкочастотным (НЧ) дросселем, сглаживающий форму потребляемого тока,
  • или активного — тогда это фактически ещё один силовой блок перед основным инвертором, мало уступающий ему по сложности и стоимости.

PFC не имеет ничего общего с cos φ, PFC выполняет функцию поддержания импульса тока в виде синусоиды.

  • Пассивный PFC позволяет поднять PF примерно до 0,85-0,9, но только для определённой потребляемой мощности, обычно ближе к максимальной, а на меньшей неэффективен. Иногда используется для обесечения работы инвертора от бензогенератора, о чём обязательно упоминается в документации.
  • Активный PFC гораздо более эффективен, значительно расширяет диапазон допустимых колебаний сети и является настолько серьёзной функцией, что при ее наличиии производители не то что не умалчивают, а пишут на видном месте крупным шрифтом.

Есть много производителей инверторов, которые для своих моделей (обычно бытового назначения, но не только) на токи 120-160А с питанием от однофазной сети 220В заявляют коэффициент мощности 0,92 — 0,98 , а то и 0,99. При этом производители нигде не упоминают о применении PFC, впрочем, и так известно и вскрытия это подтверждают, что его там нет и в помине, да и при такой цене не может быть.

Как пишут о КМ и cos φ:

1) пишут только коэффициент мощности (КМ) = 0,92 — 0,99;

2) пишут только cos φ = 0,92 — 0,99;

3) пишут и cos φ = 0,92 — 0,99 и КМ = 0,6 — 0,7.

Рассмотрим коэффициенты мощности инверторов разных производителей с питанием от однофазной сети 220В на токи до 160-180А, в основном ручной дуговой сварки, обычно бытового назначения (но не только), из ценового диапазона в основном до 400-450 евро

Для начала, откуда вообще взялся этот cos φ. Если нагрузка содержит реактивность, ток и напряжение имеют синусоидальную форму, но сдвинуты по фазе на некий угол φ, вот коэффициент мощности такой нагрузки численно равен cos φ (о чем мы писали ранее в Части 1).

Обращу внимание, речь идет именно о синусоидальных токе и напряжении, так как сдвиг фазы на некий угол бывает только между синусоидами и только одинаковой частоты.

Инверторный сварочный источник для сети представляет собой очень нелинейную нагрузку, он потребляет из сети ток короткими импульсами колоколообразной формы только в моменты, когда синусоида сетевого напряжения проходит через свой максимум. Большую часть периода ток вообще не потребляется, то есть форма потребляемого тока очень сильно отличается от синусоиды, при этом КМ равен отношению первой гармоники тока к полному току, сумме всех гармоник. Это означает, что чем больше форма тока отличается от синусоиды, тем меньше КМ, а, например, упоминаемый реальный КМ = 0,6 означает, что первая гармоника тока составляет только 0,6 от полного тока.

Возвращаясь к различиям КМ и cos φ — весьма часто приводят не КМ, а именно cos φ. Угол φ может быть только между синусоидами одной частоты. Синусоида напряжения у нас есть, но вместо синусоиды тока у нас упомянутые выше импульсы, так где же φ? Ответ простой: единственный φ, который тут можно хоть как-то упоминать — это сдвиг фазы между напряжением и первой гармоникой тока. Другие гармоники тоже синусоиды, но у них другая частота.

Такой cos φ, привязанный только к первой гармонике тока, обладает совершенно замечательным свойством. Гармоника всегда есть идеальная синусоида по определению как теоретический конструкт, совершенно независимо от того, насколько сильно искажена форма тока. А поскольку импульс тока всегда привязан к максимуму синусоиды напряжения, то и сдвиг фазы между напряжением и первой гармоникой будет всегда минимальный, и тоже почти независимый от искажений. А это значит, что такой cos φ всегда будет почти 0,99 и практически никак не связан с реальным КМ. Вот у нас например реальный КМ = 0,6, и пусть при этом такой синтетический cos φ = 0,99. Теперь допустим ещё больше исказилась форма тока и стал КМ = 0,3 — что будет с таким cos φ? Да ничего, какой был, такой и останется, может, уменьшится до 0,96.

Например, для пересчёта кВт в кВА чем пользоваться, cos φ или КМ? Ясное дело — КМ. А зачем тогда вообще приводят этот бесполезный и практически ничего не означающий cos φ? Думаю, в основном из-за рекламно-спортивной красивости девятки после запятой.

Иногда пишут: «cos φ = 0,9-0,99» – это, как бы, свойство инвертора, поскольку цитата: «ток и напряжение находятся в фазе и угол φ примерно равен 0». Хотел бы ещё раз обратить ваше внимание, что cos φ изначально это всего лишь тот же КМ применительно к цепям с линейной реактивностью, что к инвертору как нагрузке сильно нелинейной не имеет никакого отношения.

И в завершение, приведу научно-популярное определение «инвертирования», как поэтапное преобразование энергии:

  1. этап. Выпрямление питающего сетевого напряжения переменного тока на входном выпрямителе (диодный мост);
  2. этап. Преобразование постоянного напряжения в переменное высокочастотное на инверторе;
  3. этап. Высокочастотное переменное понижается до соответствующего сварочного напряжения в трансформаторе;
  4. этап. Преобразование переменного напряжения в постоянное на выходном выпрямителе;
  5. этап. Весь процесс преобразования регулируется за счет обратных связей блоком управления, который обеспечивает необходимые статистические и динамические характеристики сварочного тока.

Мощность, как важная характеристика сварочного аппарата

При приобретении оборудования для электродуговой сварки мощность сварочного аппарата в большинстве случаев является определяющим фактором выбора подходящей модели. От значения этого параметра зависит величина рабочего тока устройства, а также толщина металлических заготовок, с которыми оно способно работать.

Порядок выбора

В сопроводительном документе (паспорте) на каждый конкретный сварочный аппарат фирмой-производителем указывается максимальная мощность, обеспечивающая его работу в режиме пиковых нагрузок. Именно поэтому при её оценке следует ориентироваться на качество напряжения в электросети, к которой подключается данный аппарат.

Страница с техническими характеристиками в паспорте сварочного аппаратаПри этом нельзя упускать из внимания то, что даже сравнительно мощный инвертор при значительных колебаниях напряжения в сети не сможет гарантировать требуемой производительности работы и максимальной отдачи.

Порядок выбора подходящего по энергоёмкости инверторного сварочного аппарата, полуавтомата или обычного трансформаторного выпрямителя имеет много схожих черт. Поэтому ознакомимся сначала с общими правилами выбора рабочих агрегатов, при оценке мощности которых обычно руководствуются следующими соображениями:

  • для отдельных моделей сварочных аппаратов паспортные данные нередко завышаются производителем на 10-15%. Из этого следует, что при покупке следует выбирать прибор с некоторым запасом по мощности;
  • в отсутствии в паспорте графы «мощность» нужно ориентироваться на величину тока, которую аппарат потребляет в режиме максимальной нагрузки (для оценки его мощности это значение умножается на показатель действующего в сети напряжения – 220 или 380 Вольт);
  • при покупке сварочного аппарата, не рассчитанного на значительные перегрузки (на длительную эксплуатацию в «тяжёлых» режимах) большая мощность не требуется, в нормальных условиях сварки вполне достаточно прибора с рабочей нагрузкой порядка 120-130 Ампер.

При выборе трансформаторных аппаратов для ручного сваривания следует помнить о том, что со временем это оборудование изнашивается. Причём чем больше мощность и рабочий ток, тем сильнее нагрев сварочного аппарата и его износ.

Выпрямитель

Этот аппарат относится к устройствам трансформаторного типа, работающим по принципу преобразования переменного напряжения в требуемую для сварки постоянную величину.

В отличие от типового преобразовательного прибора при работе с выпрямителем удаётся получать более стабильную дугу с хорошими качественными показателями и лучшими характеристиками. Благодаря этому на нём удаётся варить не только обычные стальные изделия, но и цветные металлы, включая заготовки небольшой толщины. При работе с выпрямителем особого опыта проведения сварочных работ не требуется.

При определении требуемого показателя мощности этого аппарата обычно исходят из значения напряжения электрической дуги (для выпрямителя оно составляет 24 Вольта). Затем эта величина умножается на значение рабочего тока (обычно – 160 Ампер), что в результате даёт так называемую «мощность на дуге».

При необходимости точно оценить энергопотребление приобретаемого прибора в расчёты вводится поправка на непроизводительный нагрев оборудования (показатель полезного действия, равный примерно 0,65-0,7). Для устройств с бестрансформаторным выходом также должен учитываться коэффициент мощности (обычно он равен 0,95…1).

Инвертор

При покупке и выборе такой известной разновидности сварочного оборудования, как инверторный аппарат, также следует обращать внимание на показатель его мощности. При этом обязательно учитывается номинальное значение тока, при котором электронный прибор сможет интенсивно работать длительное время и не перегреваться.

Для обоснования правильности выбора инвертора рассмотрим пример работы с трёхмиллиметровым электродом и величиной рабочей нагрузки, равной 120-ти Ампер. В этом режиме удаётся сваривать металлические заготовки толщиной порядка 3-4 мм.

Из этого следует, что для расширения функциональных возможностей и мощности сварки инвертором желательно обеспечить небольшой запас по токовому параметру (до 160-180 Ампер). Это позволит работать не в предельном (критическом), а в щадящем режиме, что заметно снижает вероятность выхода сварочного аппарата из строя и продлит его работоспособность.

При выборе размера запаса по току важно рассчитать не только величину рабочей нагрузки на сварочный аппарат, но и возможные отклонения питающего напряжения от номинала.

Запас по мощности может потребоваться и в тех случаях, когда длина используемых для подводки тока кабелей превышает 5 метров. При этом критичной считается их протяжённость, достигающая 15-ти метровой отметки.

Полуавтомат

Такой распространённый тип оборудования, как сварочный полуавтомат позволяет работать в широком диапазоне токов и выполнять непростые операции по сварке листовых заготовок и цветных металлов. С помощью сварочного полуавтоматического оборудования удаётся сплавлять сложные в обработке изделия из тонколистового материала, с которыми обычно работают в авторемонтных мастерских.

Эта разновидность сварных аппаратов позволяет варить в защитной среде аргона или углекислого газа, что повышает эффективность и качество сварки за счёт блокирования содержащегося в воздухе кислорода.

Иногда в этих целях используется специальная порошковая проволока, выполняющая функцию присадочного материала и также улучшающая качество сварного шва.

Рабочая мощность полуавтомата выбирается с учётом всех уже рассмотренных ранее факторов, к которым следует добавить особенность этого устройства. Дело в том, что в момент включения полуавтоматического устройства наблюдается импульсный скачок потребляемого тока, что обязательно должно учитываться при оценке приобретаемой техники.

Важно сориентироваться и по стоимости выбираемого сварочного аппарата, которая напрямую связана с показателем его мощности. Однако в случае, когда необходимо работать с тонколистовыми заготовками и цветными металлами с дополнительными издержками при приобретении полуавтомата вполне можно смириться.

При оценке параметра потребляемого агрегатом тока (независимо от модели и класса) специалистами учитывается и такой мало знакомый любителям параметр, как коэффициент мощности сварочного инвертора или любого другого сварочного устройства. Эта величина учитывает реактивный характер нагрузки на сеть при подключении к ней того или иного сварочного аппарата.

Для некоторых из них (инвертора, в частности) преобладают емкостные показатели реактивных потерь, а для трансформаторных схем заметнее проявляются индуктивные составляющие.

В итоге еще раз надо стоит отметить, что мощность любого сварочного агрегата является важнейшим показателем эффективности его работы в различных режимах эксплуатации. Именно поэтому выбору этого параметра должно уделяться повышенное внимание.

Похожие статьи

Вычисление мощности сварочного инвертора

Сварочные инверторы сегодня приобрели большую популярность, постепенно вытеснив трансформаторы и выпрямители. Благодаря небольшим габаритам и приемлемой цене они стали доступны для использования и в загородном хозяйстве и в гараже и в домашних условиях.

При выборе инвертора у непрофессиональных сварщиков может возникнуть вопрос — а на какую же максимальную мощность выбрать сварочный аппарат? В магазинах можно найти большое количество сварочных инверторов с заявленным максимальным током 160А, 190А, 200А, 250А и т.д. Конечно есть соблазн взять сварочник помощнее, с запасом. И тут при выборе надо помнить, где он будет применяться и с какой целью. Например обычная бытовая однофазная сеть 220В рассчитана на ток нагрузки до 16А. На такой ток рассчитаны розетки, вилки, провода, автоматы. То есть максимальная мощность сварочного инвертора при работе в такой сети будет ограничена.

Также важно помнить, что далеко не все наши сети имеют стабильное напряжение 220V. Если в городской черте перепады напряжения обычно незначительны — до ± 15%, что не является проблемой для сварочных инверторов, рассчитанных на отклонения напряжения до 20%, то в садоводствах, деревнях, гаражах просадка может достигать и 25-30% от номинального напряжения. В таком случае большинство инверторов будет работать нестабильно, дугу будет просто не поджечь.

Так как же нам рассчитать потребляемую мощность инвертора?

Для этого необходимо знать несколько характеристик, а именно коэффициент полезного действия (КПД) инвертора, напряжение сварочной дуги, продолжительность включения, коэффициент мощности, значение максимального тока.

КПД сварочных инверторов в среднем составляет 85%.

Продолжительность включения (ПВ) — это характеристика времени непрерывной работы инвертора относительно общего времени его использования. Она обычно рассчитывается в процентах, за 100 % принят цикл 10 мин. В хороших профессиональных инверторах ПВ считается 60 % и выше.

Коэффициент мощности для недорогих моделей имеет показатель 0,6-0,7. Для дорогих профессиональных моделей этот показатель может иметь значение 0,8-0,85.

Теперь рассчитаем потребляемую мощность инвертора.

Например, наш сварочный инвертор имеет такие характеристики: максимальный потребляемый ток 160А, выходное напряжение 30V, КПД составляет 0,85, продолжительность включения 60 %.

Умножаем максимальный потребляемый ток на выходное напряжение и коэффициент мощности P= I * U * cosφ = 160 * 30 * 0.7 = 3360 W. Теперь полученный результат разделим на 0,85. 3360/0.85 = 3953 W. Мы получили максимальную мощность инвертора, потребляемую при сварке. Высчитаем среднюю мощность инвертора, умножив максимальную мощность на ПВ — 3953 * 0,6 = 2372 W. Этот показатель и является тем значением, на который надо ориентироваться.

В заключении хотел бы привести таблицу выбора диаметра электродов в зависимости от толщины металла и сварочного тока.

Толщина металла, мм Мощность сварочного тока, А Диаметр электрода, мм
1,5 30–50 2,0
2,0 45–80 2,5
3,0 90–130 3,0
4,0 120–160 3,0
5,0 130–180 4,0
8,0 140–200 4,0
10 150–220 4,0–5,0
15 и более 160–320 4,0–6,0

Доступно о характеристиках сварочных аппаратов

Выбираете сварочный аппарат и не знаете, что значат все его описанные характеристики, и каково их влияние на показатели работы той или иной модели? В этой статье мы постараемся в доступной форме объяснить смысл различных параметров, и чем они могут быть для вас полезны.

Существуют технические характеристики, которые при выборе модели следует учитывать в первую очередь. Это сила тока и продолжительность включения.

Сила тока

Показатель, характеризующий мощность аппарата. Измеряется в амперах. Чем она больше, тем большим диаметром электродов можно будет варить. А чем больше диаметр используемого электрода, тем выше производительность. Это показывает прямую зависимость между величиной силы тока и работоспособностью аппарата.

Для бытовых нужд, когда предполагаются небольшие объемы периодических сварочных работ вполне достаточно аппарата с силой тока 130-200 Ампер, но приобретая модель для стационарного поста в цеху или мастерской, следите, чтоб этот показатель был не менее 200 Ампер.

Можно примерно рассчитать нужную силу тока, исходя из предполагаемого диаметра электрода, которым вы будете пользоваться. Учитывая тот факт, что на 1 мм сечения электрода необходима сила тока примерно в 40 Ампер, то для сварки 4 мм электродом необходим аппарат с мощностью 160 Ампер.

Не рекомендуется применять электроды максимально возможных диаметров, так как это уменьшает глубину провара шва и снижает его качество. Например, с аппаратом мощностью 160 Ампер, можно работать электродом диаметром до 4 мм, но при этом мощность дуги падает и возрастает вероятность непровара шва. В свою очередь, модель в 260 Ампер, может использовать электроды диаметром до 6,5 мм и потому с таким аппаратом с легкостью применяются 4-миллиметровые электроды без угрозы неполного формирования шва.

Кроме того, сварка разного металла электродом одного диаметра требует различной силы тока. Например, использование электрода диаметром 4 мм для сварки малоуглеродистой стали требует силы тока в 150 Ампер, а для соединения деталей из «нержавейки» — 170 Ампер.

Так же рекомендуется выбирать аппарат с запасом силы тока на 1/3 от предполагаемой величины использования для исключения его работы на максимальной мощности и продления срока амортизации.

Продолжительность включения (ПВ)

Данный показатель характеризует отрезок времени непрерывной работы в 10-минутном периоде при определенной силе тока и температуре внешней среды. Например, показатель ПВ при t=20 С — 80 (45%). Это значит, что данный аппарат, при t=20 С и силе тока в 80 Ампер, способен непрерывно работать без перегрева в течении 4,5 минут и должен иметь перерыв в работе 6,5 минут. Рабочий период необязательно должен быть непрерывным, а может набираться по совокупности в течение 10-минутного интервала.

Практика показывает, что в сварочном процессе 80% рабочего времени занято подготовкой (передвижение детали, смена электродов, зачистка, откол шлака, перемещение самого сварщика относительно детали и т.д.) и только 20% приходится непосредственно на сварку.

Кроме основных характеристик существуют дополнительные показатели, которые помогут сделать выбор между моделями, на первый взгляд, схожими.

Какой должна быть мощность сварочного аппарата?


Часто спрашивают: что такое ПВ или ПН сварочного аппарата? Заглавные буквы ПН обозначают продолжительность нагрузки, а ПВ — продолжительность включения соответственно. Режим работы инверторного аппарата не менее важная характеристика, чем величина максимального сварочного тока. Про режим работы часто забывают начинающие сварщики. Этого делать нельзя.

Параметр ПН/ПВ всегда указан в процентах и показывает время работы инвертора при десятиминутном цикле. Например, если ПН/ПВ равен 40% — это означает, что после 4 минут работы аппарату нужно будет передохнуть, охладиться в течении 6 минут до повторного запуска. Таким образом, цифра позволяет приблизительно оценить, сколько раз инвертор будет отключаться по перегреву при бесперебойной работе в течение длительного времени.

Нагрузка источника питания (далее по тексту ИП) для дуговой сварки имеет, как правило, переменный характер. Процесс сварки состоит из повторяющихся циклов в которых рабочий период чередуется с паузами необходимыми для замены электродов, подготовки к наложению следующего шва, подгонки деталей и т.д. Согласно стандартам различают три типовых режима работы:

  • Длительный при неизменной нагрузке;

Так работают ИП для автоматической сварки и многопостовые источники.

  • Чередующийся;

Рабочие периоды прерываются режимами работы на ХХ. В данном случае применяется понятие продолжительности нагрузки (ПН)

  • Повторно-кратковременный

Рабочие периоды чередуются с периодами полного отключения силовых цепей ИП от сети.

В данном случае рабочий режим положено именовать как продолжительность включения (ПВ)

ПН/ПВ равно отношению времени работы аппарата к времени всего цикла. Длительность цикла принимается за 10 мин. Формула выглядит так:

Факторы, влияющие на потребление энергии

Перед проведением подсчетов, вы должны четко понимать, из каких величин складывается общее потребление электричества. Мощность, указанная на коробке, тоже учитывается в просчете, это важная составляющая, но она не является единственной. Также нужно знать несколько величин, чтобы более точно составить формулу.

Из основных факторов, влияющих на напряжение, выделяют:

  • мощность аппарата;
  • диапазон входящего напряжения;
  • максимальный сварочный ток, на который способен инвертор;
  • параметры напряжения электрической дуги;
  • коэффициент полезного действия конкретной модели;
  • длительность работы.

Совокупность всех значений будет определять суммарную мощность агрегата.

Из дополнительных составляющих потребляемой мощности учитывают:

  • состояние вашей проводки;
  • условия и режимы сварки;
  • надежность проводов.

Также нужно обратить внимание, что бытовая электросеть не всегда выдает общепризнанное напряжение в 220 вольт. В лучшем случае, вы получите 200. Когда вы включаете сварочный аппарат, то снижается диапазон сварочного тока, необходимый при работе. Это затрудняет произвести точный расчет. В первую очередь это касается не мощных инверторов. Если же аппарат рассчитан на работу в пределах 150-250 вольт, то подсчеты производятся с более точными показателями. Так как среднее арифметическое значение примерно равно напряжению электросети.

Теперь поговорим о продолжительности работы аппарата. Она относится к основным условиям расчета мощности. Эта важная характеристика показывает, сколько времени может работать инвертор непрерывно. У каждой модели разные значения работы и отдыха. Например, сварочник работает в течение четырех минут, а для охлаждения ему потребуется такое же время. Но есть сварочные инверторы, которые работают 5 минут, а отдыхают 2 минуты. В этом случае, расход потребления будет выше. Этот факт нужно запомнить в последующих расчетах.

Шильда AMIG-350

Коэффициент мощности (КМ) сварочного аппарата и cos φ. Часть 2

Хорошо известно, что у импульсных источников питания с так называемым бестрансформаторным входом (к ним относятся и сварочные инверторы) коэффициент мощности (КМ или power factor — PF) обычно не лучше 0,6-0,7 из-за значительных искажений формы потребляемого тока. Из-за такой специфики входа получение лучшего PF невозможно без применения корректора коэффициента мощности (PFC):

  • или пассивного — это по сути дополнительный фильтр на входе с очень массивным низкочастотным (НЧ) дросселем, сглаживающий форму потребляемого тока,
  • или активного — тогда это фактически ещё один силовой блок перед основным инвертором, мало уступающий ему по сложности и стоимости.

PFC не имеет ничего общего с cos φ, PFC выполняет функцию поддержания импульса тока в виде синусоиды.

  • Пассивный PFC позволяет поднять PF примерно до 0,85-0,9, но только для определённой потребляемой мощности, обычно ближе к максимальной, а на меньшей неэффективен. Иногда используется для обесечения работы инвертора от бензогенератора, о чём обязательно упоминается в документации.
  • Активный PFC гораздо более эффективен, значительно расширяет диапазон допустимых колебаний сети и является настолько серьёзной функцией, что при ее наличиии производители не то что не умалчивают, а пишут на видном месте крупным шрифтом.

Есть много производителей инверторов, которые для своих моделей (обычно бытового назначения, но не только) на токи 120-160А с питанием от однофазной сети 220В заявляют коэффициент мощности 0,92 — 0,98 , а то и 0,99. При этом производители нигде не упоминают о применении PFC, впрочем, и так известно и вскрытия это подтверждают, что его там нет и в помине, да и при такой цене не может быть.

Как пишут о КМ и cos φ:

1) пишут только коэффициент мощности (КМ) = 0,92 — 0,99;

2) пишут только cos φ = 0,92 — 0,99;

3) пишут и cos φ = 0,92 — 0,99 и КМ = 0,6 — 0,7.

Рассмотрим коэффициенты мощности инверторов разных производителей с питанием от однофазной сети 220В на токи до 160-180А, в основном ручной дуговой сварки, обычно бытового назначения (но не только), из ценового диапазона в основном до 400-450 евро

Для начала, откуда вообще взялся этот cos φ. Если нагрузка содержит реактивность, ток и напряжение имеют синусоидальную форму, но сдвинуты по фазе на некий угол φ, вот коэффициент мощности такой нагрузки численно равен cos φ (о чем мы писали ранее в Части 1).

Обращу внимание, речь идет именно о синусоидальных токе и напряжении, так как сдвиг фазы на некий угол бывает только между синусоидами и только одинаковой частоты.

Инверторный сварочный источник для сети представляет собой очень нелинейную нагрузку, он потребляет из сети ток короткими импульсами колоколообразной формы только в моменты, когда синусоида сетевого напряжения проходит через свой максимум. Большую часть периода ток вообще не потребляется, то есть форма потребляемого тока очень сильно отличается от синусоиды, при этом КМ равен отношению первой гармоники тока к полному току, сумме всех гармоник. Это означает, что чем больше форма тока отличается от синусоиды, тем меньше КМ, а, например, упоминаемый реальный КМ = 0,6 означает, что первая гармоника тока составляет только 0,6 от полного тока.

Возвращаясь к различиям КМ и cos φ — весьма часто приводят не КМ, а именно cos φ. Угол φ может быть только между синусоидами одной частоты. Синусоида напряжения у нас есть, но вместо синусоиды тока у нас упомянутые выше импульсы, так где же φ? Ответ простой: единственный φ, который тут можно хоть как-то упоминать — это сдвиг фазы между напряжением и первой гармоникой тока. Другие гармоники тоже синусоиды, но у них другая частота.

Такой cos φ, привязанный только к первой гармонике тока, обладает совершенно замечательным свойством. Гармоника всегда есть идеальная синусоида по определению как теоретический конструкт, совершенно независимо от того, насколько сильно искажена форма тока. А поскольку импульс тока всегда привязан к максимуму синусоиды напряжения, то и сдвиг фазы между напряжением и первой гармоникой будет всегда минимальный, и тоже почти независимый от искажений. А это значит, что такой cos φ всегда будет почти 0,99 и практически никак не связан с реальным КМ. Вот у нас например реальный КМ = 0,6, и пусть при этом такой синтетический cos φ = 0,99. Теперь допустим ещё больше исказилась форма тока и стал КМ = 0,3 — что будет с таким cos φ? Да ничего, какой был, такой и останется, может, уменьшится до 0,96.

Например, для пересчёта кВт в кВА чем пользоваться, cos φ или КМ? Ясное дело — КМ. А зачем тогда вообще приводят этот бесполезный и практически ничего не означающий cos φ? Думаю, в основном из-за рекламно-спортивной красивости девятки после запятой.

Иногда пишут: «cos φ = 0,9-0,99» – это, как бы, свойство инвертора, поскольку цитата: «ток и напряжение находятся в фазе и угол φ примерно равен 0». Хотел бы ещё раз обратить ваше внимание, что cos φ изначально это всего лишь тот же КМ применительно к цепям с линейной реактивностью, что к инвертору как нагрузке сильно нелинейной не имеет никакого отношения.

И в завершение, приведу научно-популярное определение «инвертирования», как поэтапное преобразование энергии:

  1. этап. Выпрямление питающего сетевого напряжения переменного тока на входном выпрямителе (диодный мост);
  2. этап. Преобразование постоянного напряжения в переменное высокочастотное на инверторе;
  3. этап. Высокочастотное переменное понижается до соответствующего сварочного напряжения в трансформаторе;
  4. этап. Преобразование переменного напряжения в постоянное на выходном выпрямителе;
  5. этап. Весь процесс преобразования регулируется за счет обратных связей блоком управления, который обеспечивает необходимые статистические и динамические характеристики сварочного тока.

Формула расчета

Чтобы правильно произвести расчет, первым делом, необходимо ознакомиться с техническими параметрами вашего сварочного аппарата из инструкции, прилагаемой к изделию или информацией в интернете, применимой именно к данной модели.

Данные, которые вы найдете в технических характеристиках следующие:

  • КПД мощности;
  • силу тока в максимальном значении;
  • наивысшее напряжение электродуги;
  • коэффициент эффективности аппарата;
  • длительность работы.

Max значение силы тока* Max значение напряжения / КПД = потребляющая мощность аппарата

Мы облегчим вам работу, и скажем, что коэффициент мощности всегда берите за 0,6. Такое значение имеют практически все современные инверторы. Теперь подставьте цифры из данных о вашем сварочнике в формулу, и вы получите мощность аппарата в рабочем состоянии.

Но выделим такие моменты, как замена электродов, регулировка мощности, простой для подбора следующих свариваемых поверхностей и другие моменты, когда вы не производите сам шов. Для этих целей пригодится параметр длительности работы аппарата, о котором мы говорили выше. Полученный результат мощности аппарата необходимо умножить на эту цифру. Тогда вы приблизите результат к более точным значениям. Например, ваша первая цифра составила 5 кВт. Умножаем на нижнее значение времени работ (например 60%) и получаем 3 кВт, которое и составляет среднюю мощность всех сварочных работ, включая простои.

Такая несложная процедура просчета обеспечит вас знаниями, сколько затрачивает ваш инвертор электроэнергии. Напомним, что эта формула применима только к сварочным инверторам, а с расчетами полуавтомата не работает. Но о них поговорим в следующий раз. Скажем только, что их потребляемая мощность будет выше.

Подведем итоги

Это вся информация, которая будет актуальной при расчетах. Вы знаете обо всех процессах и этапах работы. Предлагаем самому рассчитать, получится ли варить дома без ущерба для кошелька.

Бывает так, что вы не уверены в цифрах – тогда купите агрегат невысокой мощности. Он станет спутником в проведении простых домашних работ и при этом сэкономит электроэнергию. У вас получится соорудить теплицу или произвести ремонт мелкого металла.

Может, вы знаете другие способы расчетов – просим оставить комментарий к нашей статье. Давайте поделимся опытом друг с другом!
By : admin

Расчет расхода электроэнергии электросварочными установками

Расход электроэнергии на сварку в общем виде определяются по формулам

Эсв= + Рх.х(?-T), кВт.ч (4.1.1)

где: U — напряжение сварочной дуги, принимаемое по технологическому режиму, В;

J — сила тока (определяется замером или по технологическому режиму), А;

T — время горения дуги,ч;

? — КПД источника питания дуги (определяется по паспортным данным);

— мощность холостого хода источника питания дуги (определяется опытным путем. При сварке на переменном токе расход электроэнергии на холостой ход незначителен и им можно пренебречь), кВт;

? — полное время работы источника дуги (определяется расчетом), ч.

Время горения дуги для наплавки 1 кг металла определяется по формуле:

где: — коэффициент наплавки, представляющий собой количество металла в граммах, наплавляемого за 1 час горения дуги при J=1А (при электросварке на переменном токе электродами с толстым покрытием kн= 6 — 18 г/(А.ч), при автоматической электросварке под флюсом kн= 11 — 24 г/(А.ч)).

Расход электроэнергии при ручной дуговой электросварке определяется на 1 кг наплавляемого металла по формуле:

где: Сх — коэффициент, учитывающий потери холостого хода источника питания (при переменном токе и при питании аппарата через сварочный трансформатор и отключении его на холостом ходу коэффициент Сх может быть принят равным 1; на постоянном ходе Сх=1,17).

Вес наплавленного металла подсчитывается по формуле:

где: F — площадь поперечного сечения шва, см2;

L — длина шва, см;

? — удельный вес наплавленного металла (для малоуглеродистых сталей ?= 7,8 г/см3).

Таблица 4.1.1 — Удельный расход электроэнергии при ручной дуговой электросварке, автоматической и полуавтоматической, электрошлаковой сварке

При приобретении оборудования для электродуговой сварки мощность сварочного аппарата в большинстве случаев является определяющим фактором выбора подходящей модели. От значения этого параметра зависит величина рабочего тока устройства, а также толщина металлических заготовок, с которыми оно способно работать.

Доступно о характеристиках сварочных аппаратов

Выбираете сварочный аппарат и не знаете, что значат все его описанные характеристики, и каково их влияние на показатели работы той или иной модели? В этой статье мы постараемся в доступной форме объяснить смысл различных параметров, и чем они могут быть для вас полезны.

Существуют технические характеристики, которые при выборе модели следует учитывать в первую очередь. Это сила тока и продолжительность включения.

Сила тока

Показатель, характеризующий мощность аппарата. Измеряется в амперах. Чем она больше, тем большим диаметром электродов можно будет варить. А чем больше диаметр используемого электрода, тем выше производительность. Это показывает прямую зависимость между величиной силы тока и работоспособностью аппарата.

Для бытовых нужд, когда предполагаются небольшие объемы периодических сварочных работ вполне достаточно аппарата с силой тока 130-200 Ампер, но приобретая модель для стационарного поста в цеху или мастерской, следите, чтоб этот показатель был не менее 200 Ампер.

Можно примерно рассчитать нужную силу тока, исходя из предполагаемого диаметра электрода, которым вы будете пользоваться. Учитывая тот факт, что на 1 мм сечения электрода необходима сила тока примерно в 40 Ампер, то для сварки 4 мм электродом необходим аппарат с мощностью 160 Ампер.

Не рекомендуется применять электроды максимально возможных диаметров, так как это уменьшает глубину провара шва и снижает его качество. Например, с аппаратом мощностью 160 Ампер, можно работать электродом диаметром до 4 мм, но при этом мощность дуги падает и возрастает вероятность непровара шва. В свою очередь, модель в 260 Ампер, может использовать электроды диаметром до 6,5 мм и потому с таким аппаратом с легкостью применяются 4-миллиметровые электроды без угрозы неполного формирования шва.

Кроме того, сварка разного металла электродом одного диаметра требует различной силы тока. Например, использование электрода диаметром 4 мм для сварки малоуглеродистой стали требует силы тока в 150 Ампер, а для соединения деталей из «нержавейки» — 170 Ампер.

Так же рекомендуется выбирать аппарат с запасом силы тока на 1/3 от предполагаемой величины использования для исключения его работы на максимальной мощности и продления срока амортизации.

Продолжительность включения (ПВ)

Данный показатель характеризует отрезок времени непрерывной работы в 10-минутном периоде при определенной силе тока и температуре внешней среды. Например, показатель ПВ при t=20 С — 80 (45%). Это значит, что данный аппарат, при t=20 С и силе тока в 80 Ампер, способен непрерывно работать без перегрева в течении 4,5 минут и должен иметь перерыв в работе 6,5 минут. Рабочий период необязательно должен быть непрерывным, а может набираться по совокупности в течение 10-минутного интервала.

Практика показывает, что в сварочном процессе 80% рабочего времени занято подготовкой (передвижение детали, смена электродов, зачистка, откол шлака, перемещение самого сварщика относительно детали и т.д.) и только 20% приходится непосредственно на сварку.

Кроме основных характеристик существуют дополнительные показатели, которые помогут сделать выбор между моделями, на первый взгляд, схожими.

Дополнительные показатели

  • Напряжение питания – некоторые модели могут работать как от бытовой сети в 220 Вольт, так и от промышленной, с напряжением тока 380 Вольт. Соответственно, все сварочные аппараты разделяются по данной характеристике на однофазные (220В) и трехфазные (220/380В). Модели, работающие на 380 Вольтах, выдают сильный сварочный ток, но имеют более значительный вес. Возможность работать с бытовой и промышленной сетью делает такие сварочные аппараты универсальными.
  • Напряжение холостого хода – это величина, характеризующая минимальную силу тока на зажимах сварки без присутствия дуги. Чем выше этот показатель, тем легче проводить инициацию электрической дуги. Нормативными документами установлен верхний безопасный для здоровья порог в 100В при постоянном и 80В при переменном токе.
  • Номинальное рабочее напряжение – обычно в 2-2,5 раза меньше напряжения холостого хода. Это показатель минимального напряжения, присутствующего в дуге. Низкое его значение полезно при сварке тонких металлических деталей.
  • Вес и габариты – крайне не маловажные характеристики, если для работы нужна легкость и мобильность. Лидерами в этих показателях являются сварочные инверторы. В них компактность достигается за счет применения в их конструкции не силового, а высокочастотного генератора тока, который имеет небольшие размеры и малый вес.
  • Диаметр электрода – указывает диапазон диаметров поперечного сечения электродов, доступных к использованию с данной моделью. Возможный диаметр зависит от силы тока сварочного аппарата.
  • Коэффициент полезного действия (КПД) – характеризуется отношением полезной мощности сварочного аппарата к общей, им потребленной. Общая потребленная мощность источника является мощностью тока при номинальном напряжении и полезной мощности с учетом потерь на преодоление внутреннего сопротивления и трения в самом аппарате. Умножение номинального напряжения и тока дает величину полезной мощности. Наименьшими потерями мощности отличаются модели инверторов, имеющие КПД до 90% и более, в отличие от трансформаторов, где КПД может составлять всего около 30% .
  • AC/DC – эта аббревиатура характеризует возможность аппарата работать на постоянном и переменном токе. Существуют сварочные трансформаторы, работающие только на переменном токе и аппараты, использующие только постоянный ток, но наиболее часто представлено сочетание возможности применения и того, и другого. Так же возможна смена полярностей. При положительном заряде клеммы на свариваемом металле будет полярность прямая, а при положительном заряде на электроде – обратная. Прямая полярность увеличивает температуру детали, обратная — электрода. Изменение полярности необходимо для сварки постоянным током различных видов металла в зависимости от его свойств.
  • IP (Ingress Protection Rating) – аббревиатурное название квалификационной системы, характеризующей степень защиты электроаппаратов от проникновения твердых частиц (первая цифра от 0 до 6) и влаги (вторая цифра от 0 до 8). Чем выше данное значение, тем надежнее защита. Например, если у оборудования степень защиты IP 31, значит, исключается попадание внутрь корпуса твердых частиц диаметром до 2,5 мм и вертикально падающих капель воды.

Порядок выбора

В сопроводительном документе (паспорте) на каждый конкретный сварочный аппарат фирмой-производителем указывается максимальная мощность, обеспечивающая его работу в режиме пиковых нагрузок. Именно поэтому при её оценке следует ориентироваться на качество напряжения в электросети, к которой подключается данный аппарат.

При этом нельзя упускать из внимания то, что даже сравнительно мощный инвертор при значительных колебаниях напряжения в сети не сможет гарантировать требуемой производительности работы и максимальной отдачи.

Порядок выбора подходящего по энергоёмкости инверторного сварочного аппарата, полуавтомата или обычного трансформаторного выпрямителя имеет много схожих черт. Поэтому ознакомимся сначала с общими правилами выбора рабочих агрегатов, при оценке мощности которых обычно руководствуются следующими соображениями:

  • для отдельных моделей сварочных аппаратов паспортные данные нередко завышаются производителем на 10-15%. Из этого следует, что при покупке следует выбирать прибор с некоторым запасом по мощности;
  • в отсутствии в паспорте графы «мощность» нужно ориентироваться на величину тока, которую аппарат потребляет в режиме максимальной нагрузки (для оценки его мощности это значение умножается на показатель действующего в сети напряжения – 220 или 380 Вольт);
  • при покупке сварочного аппарата, не рассчитанного на значительные перегрузки (на длительную эксплуатацию в «тяжёлых» режимах) большая мощность не требуется, в нормальных условиях сварки вполне достаточно прибора с рабочей нагрузкой порядка 120-130 Ампер.

При выборе трансформаторных аппаратов для ручного сваривания следует помнить о том, что со временем это оборудование изнашивается. Причём чем больше мощность и рабочий ток, тем сильнее нагрев сварочного аппарата и его износ.

Выпрямитель

Этот аппарат относится к устройствам трансформаторного типа, работающим по принципу преобразования переменного напряжения в требуемую для сварки постоянную величину.

В отличие от типового преобразовательного прибора при работе с выпрямителем удаётся получать более стабильную дугу с хорошими качественными показателями и лучшими характеристиками.

Благодаря этому на нём удаётся варить не только обычные стальные изделия, но и цветные металлы, включая заготовки небольшой толщины. При работе с выпрямителем особого опыта проведения сварочных работ не требуется.

При определении требуемого показателя мощности этого аппарата обычно исходят из значения напряжения электрической дуги (для выпрямителя оно составляет 24 Вольта). Затем эта величина умножается на значение рабочего тока (обычно – 160 Ампер), что в результате даёт так называемую «мощность на дуге».

При необходимости точно оценить энергопотребление приобретаемого прибора в расчёты вводится поправка на непроизводительный нагрев оборудования (показатель полезного действия, равный примерно 0,65-0,7). Для устройств с бестрансформаторным выходом также должен учитываться коэффициент мощности (обычно он равен 0,95…1).

Инвертор

При покупке и выборе такой известной разновидности сварочного оборудования, как инверторный аппарат, также следует обращать внимание на показатель его мощности. При этом обязательно учитывается номинальное значение тока, при котором электронный прибор сможет интенсивно работать длительное время и не перегреваться.

Для обоснования правильности выбора инвертора рассмотрим пример работы с трёхмиллиметровым электродом и величиной рабочей нагрузки, равной 120-ти Ампер. В этом режиме удаётся сваривать металлические заготовки толщиной порядка 3-4 мм.

Из этого следует, что для расширения функциональных возможностей и мощности сварки инвертором желательно обеспечить небольшой запас по токовому параметру (до 160-180 Ампер).

Это позволит работать не в предельном (критическом), а в щадящем режиме, что заметно снижает вероятность выхода сварочного аппарата из строя и продлит его работоспособность.

При выборе размера запаса по току важно рассчитать не только величину рабочей нагрузки на сварочный аппарат, но и возможные отклонения питающего напряжения от номинала.

Запас по мощности может потребоваться и в тех случаях, когда длина используемых для подводки тока кабелей превышает 5 метров. При этом критичной считается их протяжённость, достигающая 15-ти метровой отметки.

Типы сварочных инверторов и расчет их мощности

Оборудование

Мощность сварочного аппарата – это одна из основных характеристик, на которые необходимо обращать внимание при его выборе.

Чтобы лучше разобраться во всех тонкостях, связанных со сварочными устройствами и понять основные моменты для расчета данного параметра, необходимо прояснить несколько важных аспектов. Информацию будет полезно знать всем тем, кто занимается сваркой.

Основные типы сварочных аппаратов

инвертор

Устройство инвертора для сварки.

Инверторные сварочные аппараты подразделяются на три категории:

  • бытовые;
  • полупрофессиональные;
  • профессиональные.

Отмеченное разделение выполнено, в первую очередь, исходя из области и частоты использования устройства. Чтобы понять, какой нужен аппарат для сварки, необходимо определиться с условиями его применения.

Бытовые рассчитаны на непродолжительное время работы. Использовать подобные приборы для постоянной и длительной сварки не представляется возможным. Уже после 5-10 минут использования аппарату необходимо дать «отдохнуть» в течение такого же, а иногда большего, промежутка времени.

В то же время возможность подключения подобного инвертора в бытовую однофазную сеть делает его весьма удобным для использования в домашних целях. Для быстрой сварки металлических конструкций на даче или для домашней работы не столь критично, сколько сварочный инвертор сделает перерывов.

Инверторы полупрофессионального класса способны функционировать дольше, что достигается благодаря особенностям их конструкции. Подобные устройства используют при ремонте труб, изготовлении каркасов и металлоконструкций. Питаются они, как правило, от трехфазной сети.

Аппараты профессионального класса способны работать без перерыва на протяжении суток. Их сварочный ток может достигать 500 ампер. Это значит, что потребляемая мощность сварочного инвертора подобного типа будет наибольшей.

Все бытовые, некоторые полупрофессиональные и профессиональные аппараты способны питаться от сети 220 вольт. В то же время не стоит забывать, что ток электросети не может превышать 160 ампер.

Приобретая инвертор необходимо заранее рассчитывать, какая мощность ему необходима и какой ток он будет потреблять.

Подключение устройства с более высокими показателями может привести к выключению автомата, либо к выгоранию контактов розетки, так как оборудование рассчитано на большее количество киловатт.

Итак, на что же следует обращать внимание при выборе бытового инвертора? В первую очередь на сварочный ток, характеристика которого указывается производителем в паспорте или руководстве к прибору.

Данный критерий показывает при каком токе будет обеспечена нормальная работа инвертора без перегрузок, с учетом продолжительной нагрузки. Конечно лучше отдать предпочтение аппаратам с запасом по мощности на 30-50% к показателю рабочего тока.

Зависимость сварочного тока от толщины металла и диаметра электрода.

В обычной городской электросети часто бывают скачки напряжения. Как правило, такие перепады происходят в обе стороны на 15-20 % от номинального значения в 220 вольт.

Обычно бытовые и профессиональные инверторы не столь чувствительны к подобным скачкам. Даже при их наличии они способны эффективно работать.

Однако во время подключении к генератору колебания могут быть существенно больше. В связи с этим лучше выбрать сварочный аппарат с защитой от перепадов напряжения.

Последний, но не менее важный фактор – цена. Купить недорогой инвертор с необходимыми параметрами – задача непростая. Это связано с тем, что некоторые производители указывают ложные характеристики в паспортах устройств.

Проверить все параметры приборов непосредственно при покупке достаточно сложно, даже при наличии в аппаратах цифровых дисплеев. Даже они могут выводить неправильную информацию и ввести покупателя в заблуждение.

Расчет мощности аппарата

Перед тем, как приступать к расчету мощности аппарата, необходимо знать следующие параметры:

  • диапазон входного напряжения и сварочного тока;
  • напряжение сварочной дуги;
  • КПД конкретного прибора;
  • продолжительность включения;
  • коэффициент мощности.

Интервал сварочного тока показывает, при каких параметрах сети можно работать. Это связано с тем, что на самом деле в бытовых электросетях не наблюдается заявленных 220 вольт. Иногда напряжение может быть меньше 200 В, а иногда – существенно превышать 220 В.

При подключении сварочного аппарата к электросети может наблюдаться падение напряжения на 5-10 процентов от номинального значения.

Принципиальная схема регулятора тока.

В связи с этим целесообразно обратить внимание на модели, для которых заявлен рабочий интервал от 150-170 до 220-250 вольт. Именно такие устройства способны обеспечить лучшие показатели мощности.

Диапазон сварочного тока определяет его наибольшее и наименьшее значение. От данной характеристики напрямую зависит мощность инвертора. Для бытовых моделей минимальные значения могут варьироваться от 10 до 50 А, а максимальные – от 100 до 160 А.

Напряжение выходного тока или напряжение сварочной дуги варьируется в интервале 20-30 В для дешевых моделей. КПД у приборов с максимальным током в 160 А обычно не превышает 0,85%.

Одной из важных характеристик инвертора является продолжительность включения. Данный параметр фактически свидетельствует о том, насколько качественно то или иное устройство. Смысл критерия сводится к соотношению времени работы к «отдыху».

Например, если данный показатель составляет 50%, то на каждые пять минут работы устройство должно охлаждаться такой же промежуток времени. Таким образом, чем ниже этот параметр, тем длиннее будут перерывы.

Высокий процент наоборот свидетельствует о том, что прибор можно использовать продолжительный период времени без перерывов.

Коэффициент мощности сварочного инвертора напрямую зависит от продолжительности включения. Расчет для определения данной характеристики определяется из соотношения времени непрерывной работы к общему времени.

Давайте рассмотрим все на простом примере. Рассчитаем мощность инверторного аппарата для сварки, проработавшего 4 минуты до срабатывания защиты. Затем ему необходимо было остывать две минуты, прежде чем он стал готовым к работе.

Итак, чтобы узнать какой коэффициент у данного устройства, необходимо три разделить на пять – общее время работы, и умножить на сто. Получаем искомую величину. Для бытового мини варианта и полупрофессионального оборудования коэффициент не превышает 0,6-0,7.

Допустим, имеется прибор, для которого необходимо электроснабжение 160-220 В, а его максимальный ток равен 160 ампер при напряжении дуги 23 вольта. Пусть коэффициент полезного действия такого прибора составляет 0,89, а ПВ 60%.

Перечисленных выше параметров вполне достаточно для расчета потребляемой мощности. Необходимо умножить ток на напряжение дуги и разделить все это на КПД. В результате получиться 4135 Ватт.

Данное значение показывает мощность, потребляемую непосредственно во время работы. Однако, как уже было сказано ранее, необходимо учитывать также и продолжительность включения. Чтобы это сделать, нужно 4135 умножить на 0,6. Получится 2481.

Данная величина является средней мощностью. Она считается наиболее актуальной и правильной при определении расхода электроэнергии.

Подобный подход наиболее приближен к действительности. Ведь очень редко можно встретить ситуацию, когда инвертор работал бы сутками напролет без перерывов. Паузы и задержки случаются всегда, без них просто не обойтись.

Стоит хотя бы учесть время, необходимое для смены электродов или для подготовки деталей к сварке.

Таблица мощности

Выбирая сварочный инвертор необходимо принимать во внимание и другие факторы, кроме потребляемых кВт. Особенно это касается профессиональных моделей. К ним предъявляются более высокие запросы, чем к бытовым версиям.

Необходимая мощность инвертора для сварки разных металлов.

Необходимо учитывать толщину свариваемых материалов. От данного критерия будет также зависеть и мощность инверторного сварочного аппарата и толщина электродов. Необходимые параметры приведены в таблице ниже.

Она существенно упрощает расчет потребляемой мощности в зависимости от условий работы. Кроме того данная таблица пригодится новичкам, которые нередко задаются вопросом о выборе электрода правильного диаметра.

Толщина металла, мм Сварочный ток, А Диаметр электрода, мм
1,5 30-50 2
2 45-80 2,5
3 90-130 3
4 120-160 3
5 130-180 4
8 140-200 4
10 150-220 4-5
15 и более 160-320 4-6

Интенсивность и объем работ – критерий, по которому выбирают прибор с определенной продолжительностью включения. Как уже было описано выше, данный параметр показывает, какую продолжительность времени устройство сможет работать с проволокой определенной толщины при заданных режимах.

Условия эксплуатации инвертора определяют класс его защиты. Если использовать прибор предстоит в помещении, тогда достаточно будет сертификации по IP21, а вот в случае эксплуатации на улице, когда температура понижена или присутствует высокая влажность, понадобится защита класса IP21.

Принципиальная схема сварочного инвертора.

Что касается сети питания, то бытовые аппараты можно включать и в обычную розетку. Профессиональные инверторы работают, как правило, от трехфазной сети с напряжением 380 вольт.

Помимо приведенных выше критериев необходимо также обращать внимание и на дополнительные параметры. Функциональность инвертора может существенно упростить выполнение определенных операций.

Например форсаж дуги за счет оптимизации силы тока предотвратит залипание. Горячий старт позволяет быстро зажечь дугу. Антизалипание отключает инвертор в случае залипания электрода.

Наличие дисплея у аппарата никогда не будет лишним. На нем могут отображаться рабочие режимы, что значительно упрощает эксплуатацию прибора.

В некоторых устройствах присутствует возможность переключения на аргонодуговую сварку одним касанием. Такие инверторы являются наиболее универсальными и позволяют решать широкий спектр задач.

В данной статье описано, какими параметрами режима работы инвертора определяется мощность, показано, что на нее влияет напряжение сварочной дуги, сила тока, продолжительность включения и т.д.

Кроме того рассмотрены различные классы сварочных аппаратов, а также их особенности и отличия. Данный материал, однозначно, будет полезен начинающим сварщикам, которые еще только думают над приобретением сварочного аппарата.